Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Exp Parasitol ; 238: 108261, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35460696

RESUMEN

Toxoplasma gondii, as other apicomplexa, employs adhesins transmembrane proteins for binding and invasion to host cells. Search and characterization of adhesins is pivotal in understanding Apicomplexa invasion mechanisms and targeting new druggable candidates. This work developed a machine learning software called ApiPredictor UniQE V2.0, based on two approaches: support vector machines and multilayer perceptron, to predict adhesins proteins from amino acid sequences. By using ApiPredictor UniQE V2.0, five SAG-Related Sequences (SRSs) were identified within the Toxoplasma gondii proteome. One of those candidates, TgSRS12B, was cloned in plasmid pEXP5-CT/TOPO and expressed in E. coli BL21 DE3. The resulting recombinant protein was purified via affinity chromatography. Co-precipitation assays in CaCo and Muller cells showed interactions between TgSRS12B-His-tagged and the membrane fractions from both human cell lines. In conclusion, we demonstrated that ApiPredictor UniQE V2.0, a bioinformatic free software, was able to identify TgSRS12B as a new adhesin protein.


Asunto(s)
Toxoplasma , Escherichia coli/metabolismo , Humanos , Aprendizaje Automático , Plásmidos/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo
2.
mSystems ; 5(1)2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992631

RESUMEN

Toxoplasma gondii, one of the world's most common parasites, can infect all types of warm-blooded animals, including one-third of the world's human population. Most current routine diagnostic methods are costly, time-consuming, and labor-intensive. Although T. gondii can be directly observed under the microscope in tissue or spinal fluid samples, this form of identification is difficult and requires well-trained professionals. Nevertheless, the traditional identification of parasites under the microscope is still performed by a large number of laboratories. Novel, efficient, and reliable methods of T. gondii identification are therefore needed, particularly in developing countries. To this end, we developed a novel transfer learning-based microscopic image recognition method for T. gondii identification. This approach employs the fuzzy cycle generative adversarial network (FCGAN) with transfer learning utilizing knowledge gained by parasitologists that Toxoplasma is banana or crescent shaped. Our approach aims to build connections between microscopic and macroscopic associated objects by embedding the fuzzy C-means cluster algorithm into the cycle generative adversarial network (Cycle GAN). Our approach achieves 93.1% and 94.0% detection accuracy for ×400 and ×1,000 Toxoplasma microscopic images, respectively. We showed the high accuracy and effectiveness of our approach in newly collected unlabeled Toxoplasma microscopic images, compared to other currently available deep learning methods. This novel method for Toxoplasma microscopic image recognition will open a new window for developing cost-effective and scalable deep learning-based diagnostic solutions, potentially enabling broader clinical access in developing countries.IMPORTANCE Toxoplasma gondii, one of the world's most common parasites, can infect all types of warm-blooded animals, including one-third of the world's human population. Artificial intelligence (AI) could provide accurate and rapid diagnosis in fighting Toxoplasma So far, none of the previously reported deep learning methods have attempted to explore the advantages of transfer learning for Toxoplasma detection. The knowledge from parasitologists is that the Toxoplasma parasite is generally banana or crescent shaped. Based on this, we built connections between microscopic and macroscopic associated objects by embedding the fuzzy C-means cluster algorithm into the cycle generative adversarial network (Cycle GAN). Our approach achieves high accuracy and effectiveness in ×400 and ×1,000 Toxoplasma microscopic images.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...